Struvite - a technique for P recovery

Malmö October 28, 2016
Gunnar Thelin
EkoBalans in brief

- Sustainable solutions for the recycling of plant nutrients from wastewater treatment, biogas production, and food industry
- Recycled nutrients are refined into high quality fertilizers and returned to agriculture or other plant production
- EkoBalans solutions are based on research on plant nutrition, nutrient balances in cropping systems, and nutrient recycling at Lund University

EkoBalans combines qualified expertise in plant ecology, chemical engineering, agriculture and forestry
Today's handling of plants nutrients and organic residues is largely unsustainable and inefficient:
One-way high-consumption of finite resources, lack of recycling, and eutrophication of soil and water.
Our goal

Agriculture
 ➔
Agricultural waste
 ➔
Food waste
 ➔
Sewage sludge

Sustainable nutrient recycling

EKO BALANS PROCESS

Biogas production
 ➔
Dewatering
 ➔
Phosphorus extraction
 ➔
Nitrogen extraction
 ➔
Recycled fertilizer products

Biochar
 ➔
Pyrolysis
 ➔
Drying

Overdosing in agriculture

Ocean biogas production

Dewatering
EkoBalans’ technologies

- Phosphorus extraction as struvite
- Short retention time and high recovery rate = small footprint / low CAPEX

- Nitrogen extraction as solid ammonium sulfate by stripping and crystallization
- Combines existing proven technologies

- Sludge detoxification by pyrolysis
- Cadmium reduced by 90%, pathogens and organic pollutants destroyed
Struvite: $\text{MgNH}_4\text{PO}_4*6\text{H}_2\text{O}$

- 12.6 % P; 5.7 % N; 9.9 % Mg
- Sometimes termed MAP
- **One** mineral - Ca-phosphates many minerals
- Crystalline, non water soluble but highly plant available P
- Specific density: 1.7 kg/dm3
- Good adhesive and settling properties

Struvite from the eco:P-process
Most often recognized as this.....
... or as “sand” in digesters

Digester sediment
70 % DS, 12 % LOI

The same sediment after drying
Struvite 70 % of DS
Controlled struvite precipitation – several alternatives

Source

• Directly on digestate, manure etc
• On dewatering reject (centrate, sludge liquor)
• On biosludge dewatering reject before digestion at WWTPs with Bio-P
• After chemical treatment to maximize P release

Technology

• Continuous flow in and out of precipitation tank, build and harvest large crystals
• Batch based system and harvest microcrystals – EkoBalans
The eco:P process

- Dewatering reject
- Aeration = pH↑
- MgCl₂
- Struvite precipitation
- Cleaned reject
- Hydrocyclone separation
- Struvite
eco:P process data

- pH 7.5: 80% P reduction, pH 8: >90% P reduction
- Retention time shortened from 60 to 20 min
- Capacity increased from 2 to 5 m³/h with shortened retention time
- pH variation does not affect struvite quality
- pH increase by aeration
- Aeration lowers Mg consumption (less MgCO₃ formation)
- Hydrocyclone: efficient separation
eco:P struvite

- Microcrystalline powder
- Spreadable as is or raw material for fertilizer production
- 12.5% P; 5.5% N; 9.5% Mg
- High nutrient plant availability
- Organic content usually <1%
- Cd below detection limit
- Other heavy metals in lower concentrations than in artificial fertilizers

Struvite from the eco:P-process
eco:P characteristics

- Simple, robust process, not sensitive to variations in pH, works at high and low P concentration
- High phosphorus recovery rate AND short retention time = small footprint
- Microcrystalls = short retention time
- pH increased by aeration, no NaOH
- Cost efficient solution
- Microcrystalls = suitable for mixing with N, K, etc
- Microcrystalls = high plant availability
EkoBalans fertilizer products

- Recycled phosphorus and nitrogen from the eco:P and eco:N processes
- NPK-mix can be customized
- Artificial fertilizer quality
- No contaminants
Struvite precipitation on final sludge dewatering reject at WWTPs with Bio-P

- WW in
 - P 100%
 - Primary sludge: P 15%
 - Digestate
 - Sludge dewatering: P 70%
 - Reject: P 25%
 - Struvite
 - Maximum P extraction: 25% of incoming P

- Return sludge: P 80%
- Surplus sludge: P 5%
- Water out: P 5%
Integrated system: struvite precipitation on biosludge dewatering reject before digestion

- WW in
 - Primary sludge: P 15%
 - Digestate: P 30%
 - Sludge dewatering: P 40%
 - Reject: P 5%
- Digester
- P-release & hydrolysis
 - Return sludge: P 80%
 - Sludge dewatering: P 50%
- Water out: P 5%
- P 100%
- P 5%
- P 55%

Maximum P extraction: >50% of incoming P
Economy

Economy at conversion from chemical to biological phosphorus removal and eco:P installation at a 100,000 p.e. WWTP

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEX struvite extraction</td>
<td>€/yr 15,000</td>
</tr>
<tr>
<td>Revenue for sold struvite</td>
<td>€/yr 30,000</td>
</tr>
<tr>
<td>Cost reduction</td>
<td></td>
</tr>
<tr>
<td>Chemicals</td>
<td>€/yr 130,000</td>
</tr>
<tr>
<td>Sludge disposal</td>
<td>€/yr 100,000</td>
</tr>
<tr>
<td>Energy savings</td>
<td>€/yr 70,000</td>
</tr>
<tr>
<td>Nitrogen removal</td>
<td>€/yr 55,000</td>
</tr>
<tr>
<td>Net improvement</td>
<td>€/yr 370,000</td>
</tr>
<tr>
<td>Investment eco:P</td>
<td>€ 900,000</td>
</tr>
<tr>
<td>ROI</td>
<td>yrs 2.4</td>
</tr>
</tbody>
</table>
Economy

Economy when installing eco:P at a WWTP for 100.000 p.e. with biological phosphorus removal

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost (€/yr)</th>
<th>Total Cost (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEX struvite extraction</td>
<td>15 000</td>
<td></td>
</tr>
<tr>
<td>Revenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Sold struvite</td>
<td>30 000</td>
<td></td>
</tr>
<tr>
<td>- Increased gas production</td>
<td>70 000</td>
<td></td>
</tr>
<tr>
<td>Cost reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Sludge disposal</td>
<td>80 000</td>
<td></td>
</tr>
<tr>
<td>- Less struvite clogging</td>
<td>60 000</td>
<td></td>
</tr>
<tr>
<td>- Nitrogen removal</td>
<td>55 000</td>
<td></td>
</tr>
<tr>
<td>Net improvement</td>
<td>280 000</td>
<td></td>
</tr>
<tr>
<td>Investment eco:P</td>
<td>900 000</td>
<td></td>
</tr>
<tr>
<td>ROI</td>
<td>3,2</td>
<td></td>
</tr>
</tbody>
</table>
What is needed for widespread implementation of sustainable P recycling?

INCENTIVES
Thank you for your attention!

Gunnar Thelin
Founder and business developer
+46 709 22 74 73
Gunnar.Thelin@ekobalans.se

EkoBalans Fenix AB
Scheelevägen 22
SE-223 63 Lund
Sweden
www.ekobalans.se